Redis核心技术21-缓存污染
# Redis核心技术21-缓存污染
Redis中如果能缓存被重复访问的数据,那就能加速业务应用的访问。但是,如果发生了缓存污染,那么,缓存对业务应用的加速作用就减少了。
缓存污染:在一些场景下,有些数据被访问的次数比较少,甚至只会被访问一次。当这些数据服务完访问请求后,如果还继续留存在缓存中的话,就只会白白占用缓存空间。这种情况,就是缓存污染。
如果只是少量数据占据缓存空间,对缓存系统的影响不大。但是如果有大量不再访问的数据滞留在缓存中。如果这时数据占满了缓存空间,我们再往缓存中写入新数据时,就需要先把这些数据逐步淘汰出缓存,这就会引入额外的操作时间开销,进而会影响应用的性能。
# 如何处理缓存污染
要解决缓存污染,我们需要把不会再被访问的数据,筛选出来并淘汰掉。这样就不用等到缓存被写满以后,再逐一淘汰旧数据之后,才能写入新数据了。而哪些数据能留存在缓存中,是由缓存的淘汰策略决定的。
# LRU缓存策略
LRU的核心思路:如果一个数据刚刚被访问了,那么这个数据肯定还会被访问到。
Redis中对LRU改进在于每个数据对应的RedisObject 结构体中设置一个 lru 字段,用来记录数据的访问时间戳。在进行数据淘汰时,LRU 策略会在候选数据集中淘汰掉 lru 字段值最小的数据(也就是访问时间最久的数据)。
但是因为只看数据的访问时间,如果一个数据被访问了一次,由于LRU算法,它会被放在头部,而后面一段时间都不进行访问该数据,该数据就会一直存在缓冲造成缓存污染。如果查询的数据量很大,这些数据占满了缓存空间,却又不会服务新的缓存请求,此时,再有新数据要写入缓存的话,还是需要先把这些旧数据替换出缓存才行,这会影响缓存的性能。
# LFU缓存策略的优化
LFU 缓存策略是在 LRU 策略基础上,为每个数据增加了一个计数器,来统计这个数据的访问次数。当使用 LFU 策略筛选淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出缓存。如果两个数据的访问次数相同,LFU 策略再比较这两个数据的访问时效性,把距离上一次访问时间更久的数据淘汰出缓存。
从这里我们看到,LFU是有两个维度来筛选并淘汰数据的:
- 数据访问的时效性
- 数据的被访问次数
相比LRU,由于增加了访问次数的淘汰条件,单词查询的数据会因为不会被再次访问,访问的次数不会再增加,因此,LFU 策略会优先把这些访问次数低的数据淘汰出缓存。这样一来,LFU 策略就可以避免这些数据对缓存造成污染了。
单次查询操作:就是指应用对大量的数据进行一次全体读取,每个数据都会被读取,而且只会被读取一次。此时,因为这些被查询的数据刚刚被访问过,所以 lru 字段值都很大。
Redis 在实现 LFU 策略的时候,只是把原来 24bit 大小的 lru 字段,又进一步拆分成了两部分。
- ldt 值:lru 字段的前 16bit,表示数据的访问时间戳;
- counter 值:lru 字段的后 8bit,表示数据的访问次数。
总结一下:当 LFU 策略筛选数据时,Redis 会在候选集合中,根据数据 lru 字段的后 8bit 选择访问次数最少的数据进行淘汰。当访问次数相同时,再根据 lru 字段的前 16bit 值大小,选择访问时间最久远的数据进行淘汰。
现在我们再对counter来深入一下,由于是8bit,最多就是255次,但是有些数据可能被访问成千上万次,Redis在实现 LFU 策略时,Redis 并没有采用数据每被访问一次,就给对应的 counter 值加 1 的计数规则,而是采用了一个更优化的计数规则。
简单来说,LFU 策略实现的计数规则是:每当数据被访问一次时,首先,用计数器当前的值乘以配置项 lfu_log_factor 再加 1,再取其倒数,得到一个 p 值;然后,把这个 p 值和一个取值范围在(0,1)间的随机数 r 值比大小,只有 p 值大于 r 值时,计数器才加 1。
使用了这种计算规则后,我们可以通过设置不同的 lfu_log_factor 配置项,来控制计数器值增加的速度,避免 counter 值很快就到 255 了。
现在还有一种情况,有些数据在短时间内被大量访问后就不会再被访问了。那么再按照访问次数来筛选的话,这些数据会被留存在缓存中,但不会提升缓存命中率。为此,Redis 在实现 LFU 策略时,还设计了一个 counter 值的衰减机制。
简单来说,LFU 策略使用衰减因子配置项 lfu_decay_time 来控制访问次数的衰减。LFU 策略会计算当前时间和数据最近一次访问时间的差值,并把这个差值换算成以分钟为单位。然后,LFU 策略再把这个差值除以 lfu_decay_time 值,所得的结果就是数据 counter 要衰减的值。