Redis核心技术27-Redis在秒杀场景的关键技术
# Redis核心技术26-Redis在秒杀场景的关键技术
秒杀场景的业务特点是限时限量,业务系统要处理瞬时的大量高并发请求,而 Redis 就经常被用来支撑秒杀活动。
不过,秒杀场景包含了多个环节,可以分成秒杀前、秒杀中和秒杀后三个阶段,每个阶段的请求处理需求并不相同,Redis 并不能支撑秒杀场景的每一个环节。
# 秒杀场景的负载特征对支撑系统的要求
由于秒杀活动会吸引大量用户进行抢购,但是,商品库存量却远远小于购买该商品的用户数,而且会限定用户只能在一定的时间段内购买。这就给秒杀系统带来两个明显的负载特征,相应的,也对支撑系统提出了要求,我们来分析下。
瞬时并发访问量非常高。
为了避免大量的访问达到数据库,给数据库带来巨大的压力,我们需要使用Redis先拦截大部分请求,避免大量请求直接发送给数据库。
读多写少
在秒杀场景下,用户需要先查验商品是否还有库存(也就是根据商品 ID 查询该商品的库存还有多少),只有库存有余量时,秒杀系统才能进行库存扣减和下单操作。但是,秒杀活动中只有少部分用户能成功下单,所以,商品库存查询操作(读操作)要远多于库存扣减和下单操作(写操作)。
# Redis在秒杀场景发挥的作用
阶段一:秒杀前
在这个阶段,用户会不断刷新商品详情页,这会导致详情页的瞬时请求量剧增。这个阶段的应对方案,一般是尽量把商品详情页的页面元素静态化,然后使用 CDN 或是浏览器把这些静态化的元素缓存起来。这样一来,秒杀前的大量请求可以直接由 CDN 或是浏览器缓存服务,不会到达服务器端了,这就减轻了服务器端的压力。
阶段二:秒杀开始
此时,大量用户点击商品详情页上的秒杀按钮,会产生大量的并发请求查询库存。一旦某个请求查询到有库存,紧接着系统就会进行库存扣减。然后,系统会生成实际订单,并进行后续处理,例如订单支付和物流服务。如果请求查不到库存,就会返回。用户通常会继续点击秒杀按钮,继续查询库存。
这个阶段主要就三个操作:库存查验、库存扣减和订单处理。后续两个步骤,只有查到有库存余量后才会执行,所以三个操作中最大的并发压力都在库存查验操作上。为了支撑大量高并发的库存查验请求,我们需要在这个环节使用 Redis 保存库存量,这样一来,请求可以直接从 Redis 中读取库存并进行查验。
为什么库存扣减操作不能在数据库执行呢?这是因为,一旦请求查到有库存,就意味着发送该请求的用户获得了商品的购买资格,用户就会下单了。同时,商品的库存余量也需要减少一个。如果我们把库存扣减的操作放到数据库执行,会带来两个问题。
- 额外的开销。Redis 中保存了库存量,而库存量的最新值又是数据库在维护,所以数据库更新后,还需要和 Redis 进行同步,这个过程增加了额外的操作逻辑,也带来了额外的开销。
- 下单量超过实际库存量,出现超售。由于数据库的处理速度较慢,不能及时更新库存余量,这就会导致大量库存查验的请求读取到旧的库存值,并进行下单。此时,就会出现下单数量大于实际的库存量,导致出现超售,这就不符合业务层的要求了。
所以,我们就需要直接在 Redis 中进行库存扣减。具体的操作是,当库存查验完成后,一旦库存有余量,我们就立即在 Redis 中扣减库存。而且,为了避免请求查询到旧的库存值,库存查验和库存扣减这两个操作需要保证原子性。
阶段三:活动结束后
在这个阶段,可能还会有部分用户刷新商品详情页,尝试等待有其他用户退单。而已经成功下单的用户会刷新订单详情,跟踪订单的进展。不过,这个阶段中的用户请求量已经下降很多了,服务器端一般都能支撑。
三个阶段中,第二阶段秒杀开始的时候,需要查验和扣减商品库存,库存查验面临大量的高并发请求,而库存扣减又需要和库存查验一起执行,以保证原子性。这就是秒杀对 Redis 的需求。
# Redis支撑秒杀场景的方法
- 支持高并发:Redis 本身高速处理请求的特性就可以支持高并发。而且,如果有多个秒杀商品,我们也可以使用切片集群,用不同的实例保存不同商品的库存,这样就避免,使用单个实例导致所有的秒杀请求都集中在一个实例上的问题了。
- 保证库存查验和库存扣减原子性执行:使用 Redis 的原子操作或是分布式锁这两个功能特性来支撑了。