学习总结录 学习总结录
首页
归档
分类
标签
  • Java基础
  • Java集合
  • MySQL
  • Redis
  • JVM
  • 多线程
  • 计算机网络
  • 操作系统
  • Spring
  • Kafka
  • Elasticsearch
  • Python
  • 面试专题
  • 案例实践
  • 工具使用
  • 项目搭建
  • 服务治理
  • ORM框架
  • 分布式组件
  • MiniSpring
  • 设计模式
  • 算法思想
  • 编码规范
友链
关于
GitHub (opens new window)
首页
归档
分类
标签
  • Java基础
  • Java集合
  • MySQL
  • Redis
  • JVM
  • 多线程
  • 计算机网络
  • 操作系统
  • Spring
  • Kafka
  • Elasticsearch
  • Python
  • 面试专题
  • 案例实践
  • 工具使用
  • 项目搭建
  • 服务治理
  • ORM框架
  • 分布式组件
  • MiniSpring
  • 设计模式
  • 算法思想
  • 编码规范
友链
关于
GitHub (opens new window)
  • Java基础

  • Java集合

  • MySQL

  • Redis

    • Redis核心技术01-基础数据结构
    • Redis核心技术02-线程IO模型
    • Redis核心技术03-持久化
    • Redis核心技术04-数据同步
    • Redis核心技术05-哨兵机制
    • Redis核心技术06-哨兵集群
    • Redis核心技术07-切片集群
    • Redis核心技术08-String
    • Redis核心技术09-keys统计案例与方案
    • Redis核心技术10-GEO
    • Redis核心技术11-时间序列数据存储
    • Redis核心技术12-消息队列
    • Redis核心技术13-异步机制
    • Redis核心技术14-CPU结构对Redis性能影响
    • Redis核心技术15-应对变慢的Redis
    • Redis核心技术16-删除数据后内存占用率还是很高
    • Redis核心技术17-缓冲区
    • Redis核心技术18-Redis缓冲是如何工作的
    • Redis核心技术19-缓冲替换策略
    • Redis核心技术20-缓冲异常
    • Redis核心技术21-缓存污染
    • Redis核心技术22-无锁原子操作
    • Redis核心技术23-分布式锁
    • Redis核心技术24-事务机制
    • Redis核心技术25-主从同步与故障切换的坑
    • Redis核心技术26-脑裂问题
    • Redis核心技术27-Redis在秒杀场景的关键技术
      • Redis核心技术26-Redis在秒杀场景的关键技术
      • 秒杀场景的负载特征对支撑系统的要求
      • Redis在秒杀场景发挥的作用
      • Redis支撑秒杀场景的方法
      • 参考
  • JVM

  • 多线程

  • 计算机网络

  • Spring

  • Kafka

  • Elasticsearch

  • Python

  • 面试专题

  • 知识库
  • Redis
旭日
2023-03-31
目录

Redis核心技术27-Redis在秒杀场景的关键技术

# Redis核心技术26-Redis在秒杀场景的关键技术

秒杀场景的业务特点是限时限量,业务系统要处理瞬时的大量高并发请求,而 Redis 就经常被用来支撑秒杀活动。

不过,秒杀场景包含了多个环节,可以分成秒杀前、秒杀中和秒杀后三个阶段,每个阶段的请求处理需求并不相同,Redis 并不能支撑秒杀场景的每一个环节。

# 秒杀场景的负载特征对支撑系统的要求

由于秒杀活动会吸引大量用户进行抢购,但是,商品库存量却远远小于购买该商品的用户数,而且会限定用户只能在一定的时间段内购买。这就给秒杀系统带来两个明显的负载特征,相应的,也对支撑系统提出了要求,我们来分析下。

瞬时并发访问量非常高。

为了避免大量的访问达到数据库,给数据库带来巨大的压力,我们需要使用Redis先拦截大部分请求,避免大量请求直接发送给数据库。

读多写少

在秒杀场景下,用户需要先查验商品是否还有库存(也就是根据商品 ID 查询该商品的库存还有多少),只有库存有余量时,秒杀系统才能进行库存扣减和下单操作。但是,秒杀活动中只有少部分用户能成功下单,所以,商品库存查询操作(读操作)要远多于库存扣减和下单操作(写操作)。

# Redis在秒杀场景发挥的作用

阶段一:秒杀前

在这个阶段,用户会不断刷新商品详情页,这会导致详情页的瞬时请求量剧增。这个阶段的应对方案,一般是尽量把商品详情页的页面元素静态化,然后使用 CDN 或是浏览器把这些静态化的元素缓存起来。这样一来,秒杀前的大量请求可以直接由 CDN 或是浏览器缓存服务,不会到达服务器端了,这就减轻了服务器端的压力。

阶段二:秒杀开始

此时,大量用户点击商品详情页上的秒杀按钮,会产生大量的并发请求查询库存。一旦某个请求查询到有库存,紧接着系统就会进行库存扣减。然后,系统会生成实际订单,并进行后续处理,例如订单支付和物流服务。如果请求查不到库存,就会返回。用户通常会继续点击秒杀按钮,继续查询库存。

这个阶段主要就三个操作:库存查验、库存扣减和订单处理。后续两个步骤,只有查到有库存余量后才会执行,所以三个操作中最大的并发压力都在库存查验操作上。为了支撑大量高并发的库存查验请求,我们需要在这个环节使用 Redis 保存库存量,这样一来,请求可以直接从 Redis 中读取库存并进行查验。

为什么库存扣减操作不能在数据库执行呢?这是因为,一旦请求查到有库存,就意味着发送该请求的用户获得了商品的购买资格,用户就会下单了。同时,商品的库存余量也需要减少一个。如果我们把库存扣减的操作放到数据库执行,会带来两个问题。

  • 额外的开销。Redis 中保存了库存量,而库存量的最新值又是数据库在维护,所以数据库更新后,还需要和 Redis 进行同步,这个过程增加了额外的操作逻辑,也带来了额外的开销。
  • 下单量超过实际库存量,出现超售。由于数据库的处理速度较慢,不能及时更新库存余量,这就会导致大量库存查验的请求读取到旧的库存值,并进行下单。此时,就会出现下单数量大于实际的库存量,导致出现超售,这就不符合业务层的要求了。

所以,我们就需要直接在 Redis 中进行库存扣减。具体的操作是,当库存查验完成后,一旦库存有余量,我们就立即在 Redis 中扣减库存。而且,为了避免请求查询到旧的库存值,库存查验和库存扣减这两个操作需要保证原子性。

阶段三:活动结束后

在这个阶段,可能还会有部分用户刷新商品详情页,尝试等待有其他用户退单。而已经成功下单的用户会刷新订单详情,跟踪订单的进展。不过,这个阶段中的用户请求量已经下降很多了,服务器端一般都能支撑。

三个阶段中,第二阶段秒杀开始的时候,需要查验和扣减商品库存,库存查验面临大量的高并发请求,而库存扣减又需要和库存查验一起执行,以保证原子性。这就是秒杀对 Redis 的需求。

image-20220826104500411

# Redis支撑秒杀场景的方法

  • 支持高并发:Redis 本身高速处理请求的特性就可以支持高并发。而且,如果有多个秒杀商品,我们也可以使用切片集群,用不同的实例保存不同商品的库存,这样就避免,使用单个实例导致所有的秒杀请求都集中在一个实例上的问题了。
  • 保证库存查验和库存扣减原子性执行:使用 Redis 的原子操作或是分布式锁这两个功能特性来支撑了。

# 参考

Redis核心技术与实战 (opens new window)

#Redis
上次更新: 2024/06/29, 15:13:44
Redis核心技术26-脑裂问题
JVM概述

← Redis核心技术26-脑裂问题 JVM概述→

最近更新
01
基础概念
10-31
02
Pytorch
10-30
03
Numpy
10-30
更多文章>
Theme by Vdoing | Copyright © 2021-2024 旭日 | 蜀ICP备2021000788号-1
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式