计算机网络
# 计算机网络基础
# 网络分层模型
七层模型
四层模型
TCP/IP 四层模型 是目前被广泛采用的一种模型,我们可以将 TCP / IP 模型看作是 OSI 七层模型的精简版本,由以下 4 层组成:
- 应用层
- 传输层
- 网络层
- 网络接口层
- 应用层:应用层位于传输层之上,主要提供两个终端设备上的应用程序之间信息交换的服务,它定义了信息交换的格式,消息会交给下一层传输层来传输。
- 传输层:传输层的主要任务就是负责向两台终端设备进程之间的通信提供通用的数据传输服务。 应用进程利用该服务传送应用层报文。“通用的”是指并不针对某一个特定的网络应用,而是多种应用可以使用同一个运输层服务。
- 传输控制协议 TCP(Transmisson Control Protocol)--提供面向连接的,可靠的数据传输服务。
- 用户数据协议 UDP(User Datagram Protocol)--提供无连接的,尽最大努力的数据传输服务(不保证数据传输的可靠性)。
- 网络层:网络层负责为分组交换网上的不同主机提供通信服务。 在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP/IP 体系结构中,由于网络层使用 IP 协议,因此分组也叫 IP 数据报,简称数据报。
- 网络接口层:我们可以把网络接口层看作是数据链路层和物理层的合体。
# 应用层常见的协议
# HTTP-超文本传输协议
超文本传输协议(HTTP,HyperText Transfer Protocol) 主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。
# SMTP-简单邮件传输(发送)协议
接受邮件的协议不是SMTP而是POP3协议。
# FTP-文件传输协议
FTP 协议 主要提供文件传输服务,基于 TCP 实现可靠的传输。使用 FTP 传输文件的好处是可以屏蔽操作系统和文件存储方式。
FTP 的独特的优势同时也是与其它客户服务器程序最大的不同点就在于它在两台通信的主机之间使用了两条 TCP 连接(其它客户服务器应用程序一般只有一条 TCP 连接):
- 控制连接:用于传送控制信息(命令和响应)
- 数据连接:用于数据传送;
这种将命令和数据分开传送的思想大大提高了 FTP 的效率。
# SSH-安全的网络传输协议
SSH( Secure Shell) 是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。SSH 建立在可靠的传输协议 TCP 之上
# TCP与UDP
# TCP与UDP的区别
是否面向连接 :UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。
是否是可靠传输:远地主机在收到 UDP 报文后,不需要给出任何确认,并且不保证数据不丢失,不保证是否顺序到达。TCP 提供可靠的传输服务,TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制。通过 TCP 连接传输的数据,无差错、不丢失、不重复、并且按序到达。
传输效率 :由于使用 TCP 进行传输的时候多了连接、确认、重传等机制,所以 TCP 的传输效率要比 UDP 低很多。
传输形式 : TCP 是面向字节流的,UDP 是面向报文的。
TCP | UDP | |
---|---|---|
是否面向连接 | 是 | 否 |
是否可靠 | 是 | 否 |
是否有状态 | 是 | 否 |
传输效率 | 较慢 | 较快 |
传输形式 | 字节流 | 数据报文段 |
首部开销 | 20 ~ 60 bytes | 8 bytes |
是否提供广播或多播服务 | 否 | 是 |
# TCP和UDP的选择
UDP 一般用于即时通信,比如: 语音、 视频 、直播等等。这些场景对传输数据的准确性要求不是特别高,比如你看视频即使少个一两帧,实际给人的感觉区别也不大。
TCP 用于对传输准确性要求特别高的场景,比如文件传输、发送和接收邮件、远程登录等等。
# TCP三次握手和四次挥手
# 三次握手
流程
一次握手:客户端发送带有 SYN(SEQ=x) 标志的数据包 -> 服务端,然后客户端进入 SYN_SEND 状态,等待服务器的确认;
二次握手:服务端发送带有 SYN+ACK(SEQ=y,ACK=x+1) 标志的数据包 –> 客户端,然后服务端进入 SYN_RECV 状态
三次握手:客户端发送带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务器端都进入ESTABLISHED 状态,完成TCP三次握手。
为什么要三次握手
三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的。
- 第一次握手 :Client 什么都不能确认;Server 确认了对方发送正常,自己接收正常
- 第二次握手 :Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:对方发送正常,自己接收正常
- 第三次握手 :Client 确认了:自己发送、接收正常,对方发送、接收正常;Server 确认了:自己发送、接收正常,对方发送、接收正常
# 四次挥手
流程
第一次挥手 :客户端发送一个 FIN(SEQ=X) 标志的数据包->服务端,用来关闭客户端到服务器的数据传送。然后,客户端进入 FIN-WAIT-1 状态。
第二次挥手 :服务器收到这个 FIN(SEQ=X) 标志的数据包,它发送一个 ACK (SEQ=X+1)标志的数据包->客户端 。然后,此时服务端进入CLOSE-WAIT状态,客户端进入FIN-WAIT-2状态。
第三次挥手 :服务端关闭与客户端的连接并发送一个 FIN (SEQ=y)标志的数据包->客户端请求关闭连接,然后,服务端进入LAST-ACK状态。
第四次挥手 :客户端发送 ACK (SEQ=y+1)标志的数据包->服务端并且进入TIME-WAIT状态,服务端在收到 ACK (SEQ=y+1)标志的数据包后进入 CLOSE 状态。此时,如果客户端等待 2MSL 后依然没有收到回复,就证明服务端已正常关闭,随后,客户端也可以关闭连接了。
只要四次挥手没有结束,客户端和服务端就可以继续传输数据!
为什么要四次挥手
TCP是全双工通信,可以双向传输数据。任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了 TCP 连接。
举个例子:A 和 B 打电话,通话即将结束后。
- 第一次挥手 : A 说“我没啥要说的了”
- 第二次挥手 :B 回答“我知道了”,但是 B 可能还会有要说的话,A 不能要求 B 跟着自己的节奏结束通话
- 第三次挥手 :于是 B 可能又巴拉巴拉说了一通,最后 B 说“我说完了”
- 第四次挥手 :A 回答“知道了”,这样通话才算结束。
# TCP如何保证传输的可靠性
基于数据块传输 :应用数据被分割成 TCP 认为最适合发送的数据块,再传输给网络层,数据块被称为报文段或段。
对失序数据包重新排序以及去重:TCP 为了保证不发生丢包,就给每个包一个序列号,有了序列号能够将接收到的数据根据序列号排序,并且去掉重复序列号的数据就可以实现数据包去重。
校验和 : TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
超时重传 : 当发送方发送数据之后,它启动一个定时器,等待目的端确认收到这个报文段。接收端实体对已成功收到的包发回一个相应的确认信息(ACK)。如果发送端实体在合理的往返时延(RTT)内未收到确认消息,那么对应的数据包就被假设为已丢失open in new window (opens new window)并进行重传。
流量控制 : TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议(TCP 利用滑动窗口实现流量控制)。
拥塞控制 : 当网络拥塞时,减少数据的发送。
# TCP的流量控制
TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。
为什么需要流量控制? 这是因为双方在通信的时候,发送方的速率与接收方的速率是不一定相等,如果发送方的发送速率太快,会导致接收方处理不过来。如果接收方处理不过来的话,就只能把处理不过来的数据存在 接收缓冲区(Receiving Buffers) 里(失序的数据包也会被存放在缓存区里)。如果缓存区满了发送方还在狂发数据的话,接收方只能把收到的数据包丢掉。出现丢包问题的同时又疯狂浪费着珍贵的网络资源。因此,我们需要控制发送方的发送速率,让接收方与发送方处于一种动态平衡才好。
# TCP的拥塞控制
在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。
为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。
# HTTP
# 从输入URL到页面展示发生了什么
- DNS 解析
- TCP 连接
- 发送 HTTP 请求
- 服务器处理请求并返回 HTTP 报文
- 浏览器解析渲染页面
- 连接结束
# HTTP状态码
# HTTP和HTTPS有什么区别
端口号 :HTTP 默认是 80,HTTPS 默认是 443。
URL 前缀 :HTTP 的 URL 前缀是 http://
,HTTPS 的 URL 前缀是 https://
。
安全性和资源消耗 : HTTP 协议运行在 TCP 之上,所有传输的内容都是明文,客户端和服务器端都无法验证对方的身份。HTTPS 是运行在 SSL/TLS 之上的 HTTP 协议,SSL/TLS 运行在 TCP 之上。所有传输的内容都经过加密,加密采用对称加密,但对称加密的密钥用服务器方的证书进行了非对称加密。所以说,HTTP 安全性没有 HTTPS 高,但是 HTTPS 比 HTTP 耗费更多服务器资源。
# HTTP 是不保存状态的协议, 如何保存用户状态?
HTTP 是一种不保存状态,即无状态(stateless)协议。也就是说 HTTP 协议自身不对请求和响应之间的通信状态进行保存。
Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态。典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个 Session)。
# HTTP 1.0 和 HTTP 1.1 有什么区别
- 连接方式 : HTTP 1.0 为短连接,HTTP 1.1 支持长连接。
- 状态码:http1.1增加了很多状态码
- **缓存处理:**缓存处理细节优化。
# Https认证过程
HTTPS 在 HTTP 的基础上引入了 SSL/TLS 协议,增加了加密传输、防篡改校验、身份校验功能。
- 客户端向服务器请求CA证书并验证其合法性
- 如果是合法的,就用对应CA的公钥解密出服务器的公钥
- 客户端生成一个随机字符串K作为与服务通信的密钥并使用服务器的公钥加密后发给服务器
- 服务端收到之后使用私钥解密出随机字符串K并校验
- 服务器通知客户端可以使用字符串K作为对称加密的密钥进行通信
- 此时客户端与服务端之间的通信就使用对称加密算法密钥就是K